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I. THE STATE OF X~RAY ASTRONOMY

In June of 1962, a rocket payload carrying x-ray detectors
was launched in an attempt to see if the moon emitted x-rays (a
possible consequence of impinging solar x-rays). No lunar x-rays
were detected, but a powerful source of x-rays in the constella-
tion Scorpius was discovered (Bowyer et al., 1964). Thus x-ray
astronomy was born.

Since then, nearly forty discreet sources of cosmic x-rays
have been located by rocket-borne detectors (Friedman, 1967).
Only the strongest of these sources have been observed by balloon-
borne detectors. There also exists an apparently isotropic back-
ground of extraterrestrial x-rays, detected by balloon experiments
(Brini et al., 1967) as well as rocket payloads (Friedman, 1967).
The most intense sources are Sco X-1 (identified with an old nova
of optical magnitude = 8) , Crux X-1 (not yetv identified with any
optical object (McCracken, 1967)), Cyg X-1 (also unidentified
optically), Cyg X-2 (tentatively identified with an object of
visual magnitude = 15.5 (Giacconi et al., 1967)), and Tau X-1
(the Crab Nebula, a supernova remnant). The optical identifica-
tions of Sco X-1 and Cyg X-2 were made by narrowing the search
to optical objects whose visual magnitude and colors (B~V and
U-B) were consistent with a flat emission spectrum (enerqgy per
unit frequency interval) from x-ray to visible frequencies, an
assumption which is valid if the photons throughout this range

are produced by bremsstrahlung in an optically thin plasma or
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by synchrotron radiation from free electrons with a flat enerqy
distribution (Giacconi et al., 1967). The most recently dis—
covered x-ray emitters include the radio galaxy M87 and the quasi-
stellar object 3C237 (Friedman, 1967), the first extra-galactic
objects so identified.

Rocket-borne detectors typically consist of geiger or pro-
portional counters which are efficient at wavelengths between 1.5
and 8 Angstrom units (energies between 8.3 and 1.55 KeV). Balloon~
borne detéctors, however, are severely limited by atmospheric
absorption at energies below about 20 KeV. The experiments
flown thus far on balloons have used sodium iodide scintillation
crystals and photomultiplier tubes, usually in conjunction with
passive and active shielding to narrow the detector's field of
view. The most effective active shield is a scintillating crystal
such as cesium iodide, which has a large absorption coefficient
for x-rays and garma rays. This "gquard" scintillator is operated
in anticoincidence with the central detector; that is, pulses
from the central detector are analyzed only if there is not a
simultaneous pulse from the guard scintillator's photomultiplier
tube.

But even with cesium iodide or sodium iodide quard scintilla-
tors a few centimeters thick, a large amount of background radia-
tion still reaches the central detector. With detectors of this
type, Peterson et al. (1965) and Haymes and Craddock (1966)
obtained x-ray counting rates from the Crab Nebula only about

70% as great as their detectors' background counting rates, in



the energy range 20-50 KeV. At other energies, the signal to
background ratio is considerably worse.

This background might largely be due to high enerqgy x-rays
and gamma rays (produced in the upper atmosphere by cosmic rays)
which can pass undetected through the quard and lose a fraction
of their original energy by the Compton effect in the central
detector. They are thus experimentally indistinguishable from
low energy x-rays which come through the experiment's forward
aperture ‘and lose all their energy in the central detector by
the photoelectric effect (the dominant energy-loss process at

energies below about 200 KeV) .



II. ATTEMPTS TO IMPROVE BALIOON-BORNE DETECTORS

The sensitivity of a balloon experiment can be improved
by increasing the detector's area or exposure time. (The total
number N of events due to a source will be proportional to the
area time product, AT, while a standard deviation ¢ in the number
of background events will be proportional to VAT; thus N/o « VAT.)
Increasing the central detector area to more than about 50 square
centﬁnetérs requires expensive anticoincidence scintillators (more
than $10;000.00 if cesium iodide is used). A fundamental limita-
tion on exposure time is imposed by the earth's rotation (15° per
hour) and the strong absorption of x-rays at zenith angles much
greater than 30°. To even utilize fully this four hour interval,
a pointing control system capable of tracking the source across
the sky must be used.

As an alternate approach to the problem of increasing the
sensitivity of a balloon-borne x-ray detector, I have considered
various ways of focusing “"hard" (of wavelength shorter than an
Angstrom unit) x-rays from a large collection area to a small
focal area (where a conventional sodium iodide crystal would be
located). To efficiently reflect x-rays of wavelength A 1R
(energy E Y 12.4 KeV), one must use Bragg reflection from a
crystal with interplanar distances no greater than a few Angstrom
units. Figure 1 shows three possible arrangements in which crystals
at points P and P' cause reflected x-rays to converge to a focal

point O. Reflection fram a given crystal can only occur if the



Bragg condition

(1) ni=2d sin 6
is satisfied or very nearly satisfied. (Here n is the order
of the reflection, d is the distance between the reflecting
planes of the crystal, and © is the glancing angle.) Since
® depends on the coordinates of P, different crystals reflect
effectively at different energies.

Most crystals have interplanar distances greater than 2
or 3 Angsfrom units. This, along with a desired low energy
limit of about 15 KeV, necessitates glancing angles 6 < 10°
for first order (by far the strongest) reflections. Thus the
geametry of Figure 1 (a) (in which ® > 45° for all reflecting
crystals) is ruled out.

The geametries of Figure 1 (b) and (c) are further campared
in Figure 2, which illustrates the difference between the Bragg
and Lave cases of reflection. In the Bragg case (Figure 2 (a))
the reflected beam leaves the face it entered whereas in the
Lave case (Figure 2 (b)) the reflected beam leaves a different
face, parallel to that which it entered. For near-optimum effi-
ciency in the Bragg case, the maximum path length in the crystal,
g%Bg must be more than one absorption length, A. (An absorption
length is the distance traveled by the incident beam in the
crystal before its intensity is reduced by a factor of e.) Thus

the crystal thickness in the Bragg case should satisfy

2 T YA Sig o .



Using a crystal much thicker than this will slightly increase
the intensity reflected fram this particular crystal, but will
prevent the closest possible spacing of adjacent crystals and
thus will waste space. The optimum crystal thickness for the
sin ©

2

Similarly, in the Laue case the efficiency of reflection

Bragg case is thus about A

is greatest if the path length, , 1s about one absorption

cos 6
length. (The probability of reflection increases linearly with
thickness until absorption becomes significant.) Thus

(3) TLQ A cos 6.
In both cases, the individual crystal's horizontal dimension "w"
(see Figure 2) must be less than the diameter of the detector
(which is centered at the focal point) so that all reflected x-
rays will be detected.

Thus, for small 6, the crystals used in the Braqg case
should be much thinner (—B- = 55%2595) than those used in the

Lave case. And if a 51nqle crystal is used to intercept x-rays

W

over a distance w, that crystal must have length § = ) in

in the Laue case. The more

the Bragg case, but only ey

convenient crystal dimensions used in the Laue case make the

gecmetry of Fiqure 1 (c) the best for our application.



ITI. THE X-RAY "LENS"

The x-ray telescope was accordingly designed as shown
schematically in Figure 3 (which is not a scale drawing). Its
"lens" consists of approximately 4000 rock salt crystals (cleaved
from large, natural chunks from a Morton Salt Company mine at
Grand Saline, Texas). Rock salt was chosen primarily for its
relatively high reflecting power (which will be defined later).
Of the crystals listed by Blokhin (1962, p. 231), those having
the highest reflecting powers are alumimum, rock salt, lithium
fluoride, quartz, and calcite. Their relative reflecting powers
are, respectively, 140, 120, 110, 35 and 35. In addition, rock
salt has a relatively small value of d (2.81 ib, making the
glancing angles larger and thus more convenient to work with.
Moreover, it occurs in nature in large chunks which are fairly
easily cleaved to the dimensions regquired for the geometry of
Figure 1 (c).

The cleaved crystals measure about 1" by 0.8" in area and
are mounted on a 6-foot diameter paraboloidal frame (as large as
I felt could be launched without great difficulty). Incident
radiation from a point source at infinity along the telescope's
axis (the Z-axis) can be reflected while passing through a crystal
if the Bragg condition (eguation 1) is satisfied or very nearly
satisfied. Thus any annular part of the lens is effective only
ovVer a narrow energy range, centered at

he hen _ 2.20n

4) E (8) = §7'= 2d sin 6 ©~ sin 6

KeV (for NaCl).



The absorption length increases with energy, so the innermost

crystals (those for which 6 is smallest) are the thickest.
Because of its cubic structure, rock salt cleaves into

parallelepipeds. Thus if salt crystals are mounted tangentially

to a curve of slope

az {:— tan 6, y >0

(5) o =
tan 6, vy :‘0
(where the axes are defined in Figure 3), one set of atomic
planes will be at an angle 6 relative to the telescope's axis.
The angle of reflection must equal 6, the angle of incidence,
so reflected x-rays leave the crystal at an angle 26 relative
to the Z-axis. In order for reflected x-rays to reach the
focal point 0 (which is defined to be the origin of our co-
ordinate system), the coordinates of the reflecting point P

must therefore satisfy
(6) |§J = tan 26.

Conditions 5 and 6 are satisfied by a parabola:

(7) Z(y):zo—ﬁ.:-%—y_z_

where ¢ is the radius of curvature in the limit |§—I << 1,
As for an ordinary parabolic mirror, 2z,, the "focal length,"
is one-half the radius of curvature of the innermost part of

the reflecting surface.



IV. THE LOW ENERGY LIMIT

Large balloons typically carry instrument packages to
altitudes where the atmospheric pressure is between 2 and 4
millibars (i.e. only about 2 to 4 grams/cm? of air are above
the detector). The transmission factor for vertically incident
x-rays as a function of energy was calculated for pressures of
2, 3, and 4 mb in the following way.

The reduction in the intensity of a beam of x-rays of
energy E as it passes through an infinitesimally thin layer of
material with linear absorption coefficient u is given by

(8) dar = - 1 |dz]
vhere |dz| is the thickness of the layer. If the absorbing
material consists of n caomponents (e.g. nitrogen and oxygen)
with mass absorption coefficients (u/p); and densities p;, then

(9) Ho= igl(u/p)ipi.

The coefficients (u/p); depend on enerdgy while the densities oy
are, in the case of the earth's atmosphere, functions of the
altitude, z. The intensity decreases as z decreases, so

(10) dr=1 : (/o) pj(2) dz

i=1
which has the solution

n
(11) I =I,e S‘; %?‘(u/p); Or
At altitudes above 123,000 feet (i.e. at pressures less than
4 mb) the atmosphere is essentially isothermal at T = 258°K + 20°K
(Ney et al.,1964). Thus, noting that the pressure due to the

ith component of the atmosphere above an altitude z is
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(12) Pi(z) = ZJ,W p;g dz = Eii%%—gg (ideal gas law),
i
where R is the universal gas constant, M; is the molecular
weight of the ith component, and g is the acceleration due to

gravity (essentially constant throughout the atmosphere), we

find that
_ Z-Z,
(13) pi(2) = pi(zo)e hj (zo> 123,000 ft.)
_ Z=2Z
and n h.
e 0;(2zo) (W/p) 4 hje "1
(14) I(z) = I.e
where hy = ;?%5 is the scale height for the ith component of
.l‘

the atmosphere.

The percent camposition by volume of air at 123,000 ft.
was found by interpolating (graphically) values of the percent
camposition at various altitudes tabulated in the Handbook of
Chemistry and Physi.cs (Thirty First Edition, p. 2678). The
calculations take into account the presence of argon as well
as nitrogen and oxygen. (Although PArgon is only ~ 1/4% of
eair) + (W) prgon 215 . (4/0) Nitrogen @t low energies so argon's
contribution to u is not negligible.) The calculated atmospheric
transmission for energiesbetween 14 and 140 KeV is shown in Figure
4,

Atmospheric absorption, while never negligible, beccmes
very important at energies below 30 KeV. For a source spectrum
which falls off as rapidly as the Crab's{gg « E~1+3(Peterson,
1965)), the peak intensity of the observed flux occurs near 25 KeV

(at 3.3 gm/am? atmospheric depth).
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V. THE REFLECTING POWER OF CRYSTALS

The reflecting power R of a crystal for x-rays of enerqy
E is defined to be

(15) R(E) = [ o(6,E)d0
where 6 is the glancing angle in radius, p is the ratio of
reflected to incident intensity, and the limits of integration
include that range of 6 over which reflection is appreciable.
(For rock salt, A6 (full width of p curve at half its maximum
- value) is on the order of 0.5°; for nearly perfect crystals
such as calcite A8 is only a few seccnds.) Using a rotating
crystal method, Bragg and others (1921) measured first order
reflections from the faces (cleavage planes) of various thick
crystals of rock salt at an energy of 20 KeV (rhodium Ko radia-
tion), obtaining an average value Ry = 5.5 x 10°* (here the sub-
script B indicates the Bragg case of reflection from a thick
crystal) .

I made measurements of the reflecting power in the Laue
case (through a crystal of optimum thickness) at higher energies,
using a tungsten target x-ray machine at an anode potential of
50 kilovolts. The primary beam was collimated to about 0.1° (FWHM)
but contained a broad, continuous spectrum of x-rays of energy up
to 50 KeV. Figure 5 shows two enerqy spectra for xX~rays from a
tungsten target at 50 kilovolts. The lower curve was obtained by
Ulrey (1918) using a high resolution (calcite crystal) X-ray spectro-
meter, while the upper curve is the spectrum I measured using a

Harshaw Integral Line 1 inch diameter NaI (T1) crystal and



12

photamultiplier tube assembly with a Victoreen PIP-400 pulse
height analyzer. The resolution of the detector I used was
relatively good for a sodium iodide crystal: resolution (FWHM)
= 25% at 28 KeV. The radiation from the target contained no
line emissions since the tungsten Ko line occurs at 59 KeV.
The number of photons reflected per second by a crystal
held at a fixed angle ¢ relative to the incident beam will be
16 N'(0) =|{F @ o(6,E)
where %— (E) is the incident differential number spectrum
(photons sec~! Kev-1) , E is the energy in KeV, and the range
of integration includes that range of enerqy over which reflec-
tion is appreciable. The measured reflected spectrum was found

to be sharply peaked at the Bragg energy, En= as—glg%

Kev,

with a full width at half maximum not significantly greater

than the FWHM resolution of the detector itself. Thus the

energy range AE of the reflected x-rays is much less than E B

so we can infer that p is a sharply peaked function of enerqgy

(for constant 6). So, provided % (E) is slowly and predictably

varying with enerqgy at EB (this is true for Ep ¢ 40 KeV for my

measurements with a 50 kilovolt supply voltage), we can write
an  we =3 &) [oe,B .

As an alternate figure of merit for a crystal's reflecting power

we can thus define a conveniently measureable "efficiency band-

width product," E.B.:

(18) E.B. (6)

1

~j‘p(e,E) dE =
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Using the measured value E.B. (6) we can calculate R(E) from
a simple relation which will be derived below.

I have also made measurements of R at the energies 22 KeV,
60 KeV, 88 KeV, and 121 KeV using radioactive sources (Cd-109,
Am-241, C3-109, and Co-57, respectively) in a Laue arrangement
(Fiqure 6) . Instead of narrowly collimating the monoenergetic
x~rays fram the source and rotating the crystal, I simply mounted
the crystal in a plane midway between source and detector (which
were a distance D = 40 inches apart) and let x-rays simultaneously
impinge on the crystal over a sufficiently wide range of 6 so that
the power reflected to the detector (whose area is ADet) was |

(19) P' . = {108y ax
vhere I, is the incident intensity at the position of the crystal,
Ay is the height of the crystal, and x is the horizontal distance
from centei:line to reflecting point. For E S 22 Kev ( eB <. rad),
equation 19 becomes

(200 P! =T, by jp-g-d 6=I,4y2 R
I, was simply calculated from measurements of the intensity of
radiation IDetat the detector with the source turret pointed
at the detector and the primary beam absorbers removed. For small
8, I, =41 =4 Ppet since the power falls off as the scuare

of distance. Thus

(21) R ___%_ g'nm- Apet

Source activities of about 1 millicurie were regquired to give
a reflected intensity much greater than the background radiation

detected by the 2 inch diameter sodium iodide crystal. The
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background spectrum was peaked at 80 to 90 KeV, and seemed to
be isotropic in the lab. Before lead shielding was put around
the detector, the background counting rate was v 6 counts/sec
(éb < E < 100 KeV). A search through the Isotope Index (1963-64)
revealed no 80-100 KeV x~ray emitters which were likely to be
present in the walls of the building, so this radiation remains
an unexplained nuisance.

The results of my measurements of R and E.B. will be presented
in a later section. Some pertinent aspects of x-ray diffraction

theory will first be discussed.
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VI. THE KINEMATIC THEORY OF X-RAY DIFFRACTION

If a crystal is perfect (i.e. has no substitution or
dislocation disorders) and if the crystal is so small that the
intensity of x-rays is diminished only negligibly in passing
through it, the reflected intensity is predicted accurately
by the kinematic theory of x-ray diffraction (Zachariasen, 1945,
pp. 82-110). Some results of this theory are summarized in the
following paragraphs.

A perfect crystal of macroscopic size may be mathematically
broken down into unit crystals, each of which has edges 3}, 3&,
and 33 (which are not all coplanar). The amplitude of an x-ray

scattered by a single loosely bound electron is given by the

Thomson formula
2

_ e‘ sin¢
(22) Be =~y o

where ¢ is the angle between the incident electric field vector
Eo and the propagation direction of the scattered radiation,
and r is the distance from the scattering point to the observer.
The amplitude scattered by a unit crystal is defined to be FEg,
where F is the "structure factor" of the unit crystal. F depends
on the electron distribution in the unit crystal and on the
directions of incident and scattered wave vectors. Since it
includes a phase factor, F in general is complex.

If the dimensions of the macroscopic crystal are N, a, s
Nzaz' and N3a3 (where N, N, and N3 are each much greater than 1)

the resulting diffraction pattern is very sharply peaked. The
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diffracted intensity then is

sinZnr (k-K,) 3 ( eZsing )2

3
(23) 1' = [FRl% T Sin’T (F-Ko) + 84 meor

i=1

where fo and ¥ are the incident and scattered wave vectors,

I,

respectively, I, is the incident intensity, and Fy is the value
of F when the conditions for Bragg reflection from an atomic plane
are satisfied or nearly satisfied.

The reflecting power Rrerfect is calculated from equation 23
by first expressing the reflected intensity I' in terms of the
glancing angle (the angle between incident beam and reflecting
planes) and the propagation direction of the reflected ray, and
then integrating I' over solid angle and glancing angle.

(The solid angle subtended by the detector is assumed to be
large compared to the solid angle in which the reflected radia-

tion is concentrated.) The result is

t
(24) Rperfect = 9 Zo5 8 ¢

where t, is the crystal thickness and

: 2 2 l |2 1 2 28
_ (& Fp + cos
(25) Qe - (mc ) V2 2 sin 26

)\3

for unpolarized radiation. V is the volume of a unit crystal.
If the glancing angle is held fixed but the enerqy of the radia-
tion is allowed to vary a similar integration gives

t

where

' _e? 2 |rl?2 1+ cos?20 hi3
e og= Gz B s B
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f\l .
for unpolarized radiation. For 6 <.l radian

v E
28 E.B. = —_—
(28) perfect Rperfect op

The reflection from a perfect crystal of finite size is
given more accurately by the results of the dynamic theory,
which takes into account true absorption (which is due mainly
to the photoelectric effect at energies below 150 KeV) and
extinction (removal of energy from the primary beam by diffrac-
tion) in the crystal. But we are interested mainly in crystals
with high reflecting powers. Single perfect crystals (even very
small ones, with thicknesses of only a few thousand atomic planes)
can reflect with efficiencies approaching unity but only over an
extremely narrow range of glancing angle (or enerqy) so R and
E.B. are very small for these crystals. On the other hand, a
mosaic crystal consists of a large number of very small perfect
crystal blocks at slightly differing orientations. Thus, for
a mosaic crystal the bandwidth over which reflection occurs can
be much larger than that for a single perfect crystal. The
individual blocks of the mosaic crystal rock salt are small
enough so that the kinematic theory can be applied to them

individually, and we need not consider the dynamic theory here.



18

VII. THE REFLECTING POWER OF A MOSAIC CRYSTAL
(LAUE CASE)

Zachariasen's (1945) derivations of expressions for the
reflecting power of a mosaic crystal assume that the kinematic
formulas apply to the individual blocks of the mosaic and that
the distribution in orientation of perfect blocks (of average

thickness t,) within the mosaic can be described by a Gaussian

function:
1 -02/2n2,
(29) W(A) = e
/21 n

where A is "the magnitude of the anqular deviation from the mean”
and n is a constant for a particular mosaic crystal. The coupled
differential equations for the incident beam power P, and reflected
beam power P.. as functions of the depth T into the crystal (meas-

ured normal to its surface) are, for the Laue case:

dT
(30) dp, = - uo Po S5 5 " © P, dT + o Pr dT
(31) AP, = - uy Pp —X_ 4 5 P, AT - o Py AT
r= "M *r o558 ° R

where p, is the ordinary linear absorption coefficient and o is
the probability of reflection per unit thickness of a thin layer
of the mosaic crystal. The ratio of reflected to incident inten-
sity for a mosaic of thickness T, then becomes

_ (Mo
(cos 8 +0)To

= 5. 7o) sinh(o T,)

(33)2 g ‘Toe _@o/cos e)To [l -0 T, +_:23_ (O'TO)Z + ...]

14

where it was assumed o T, << 1. If only the first reflections

of primary and reflected beams are taken into account (i.e. we
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neglect the last terms in equations 30 and 31), the result is

not very different from equation 33, if ¢ T, is small:

U T,

- " 2 2
(34)pz§r%%)y'=bo'r°e cos ‘:1-°2T°+°6T° + o]
L]

If the incident radiation is monoenergetic, we can calculate
o as a function of 6. We consider a small perfect crystal block
whose reflecting planes have a normal unit vector rAl at a small
angle A to the -y-axis: rA1 = (A, - cos 4, b;) = (-sin A sing,
- cosh, sin A cos¢), where & = YAZ+ A7 (see Fig. 7). Let
the direction of the incident wave be described by a unit vector

U, = (0, sin6, cosb). We now express the distribution function

in the symmetrical form

(35)  W(hg,b,) =Wy (&) W, (4,)
ey 2N 2 el A 2 J— )
(36) —ge ﬂgAX geﬂqt\z:gzeﬂqA
which is normalized so that
{ &
an [wg,oz) any arg = 1.
-§ -5

(Here the integration limits include the values of A over which
W is appreciable; for rock salt, § Y 1° is sufficient.) Thus
W(Ay, A7) dAy dAz is the probability that , in a thickness t, of
the mosaic, the incoming x-ray will strike a block whose normal
is in the range A, + (-i—Az-K, A, + d—gz- . Then the total intensity

reflected in a thickness 4T ‘(to << dT << A) will be
§

(38) Too(6) 4T = I, { f;/q(AX,AZ) ‘E—f £, (0'-0p) dny an,,
where 6 is the mean glancing angle and Ep( 6'-6B) is the ratio of
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reflectea to incident intensity for a perfect crystal at an
actual glancing angle 8' (the angle between u, and the reflec-

tion planes of the block). Fram Fig. 7,

A ~

(39) sin 6' = - cos o =-n - u, = sin 6 cos A - A, cos 6

e

(40) sin 6 - A, cos ©

e

(41) sin 6 cos 4, - cos 6 sin 4y

sin (6—AZ) .

Since A is a very small angle, we can accordingly write

(42) 8' =86 - 4,
so that
ar 0 —mg 2 g2 § -mg?A,2
(43) o(8) dr=qg? — f e da, f e Ep (0-0,-05)dA,.
o :

-6 =6
€., is very sharply ed at 8' = 6y, so it may be considered a
P B

§ - function normalized to Rperfect' Thus we obtain

_dar -1g? (6p=6) 2
(44) o(8) dT = to Rperfect qe
ar
3 =Wz 059 0 55 -
D Wy O Ty - To
(46)  joT, 48 s 42 ,=0 o

and

2m 2 2 2
2 - 0T, 2 = 90" Ty
47) frora? ao = Zigr (w2 an, = TL To”

so that we obtain from the first two terms of egquation 33
- T
() = [0 a0 2 Lo g~ (otal)

6
cos © COsY

(48) Rmosaic ,Laue

*Zachariasen (1945) uses the symbol W(A) not only for the
function defined in ecuation 29, but also in place of the funct-
ion W, in equation 45.

tFor brevity, we write Q = Qy-
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assuming 0T, << 1.
The maximum reflecting power R obtainable in the Laue case

will occur for the thickness T<,o

. . drR _ :
pt satisfying ar, = 0. This

gives

. cos 9
(49) T°opt T, + g0

and

0 -1

(50) R(T, ) e .

opt =u°:!:qQ

A crystal having a value of g much less than i% would be

"ideally imperfect;" the Laue reflecting power of an ideally
imperfect crystal of optimum thickness would be Ti% el

If the incident x-rays are not monoenergetic, but 6 is
fixed, ¢ may be calculated as a function of a variable AE = E-Ep
<< E where Ep is the energy at which the Bragg condition is satis-
fied for a glancing angle 6. Then one obtains

(51) o(AE) = E.B.

(aog(am) LBl 2

perfect Wz cos ©

from which we calculate

-(uy + 0(AE))T,

(52) E.B. = fsinh o(AE) T.e d(AE) .

mosaic,Laue
We again assume oT, << 1 and make a Taylor's expansion of the

integrand, obtaining

- 9y To
(53) BB cnic Iaue =Ea (uo + 9 E'B'perfect E )cose] x
r
E.B.perfect To
cos 6
E
(54) - Rmosaic,Laue ) .

Referring back to Figure 2, we can campare the optimum Laue

case reflecting power with the maximum reflecting power that would
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be obtainable in the Bragg case. Since the probability of reflection
is proportional to crystal volume (for an infinitesimal crystal)
and the attenuation of incident or refelcted photons (which have

the same enerqgy) is e ' path length

(where u is an effective
absorption coefficient which includes the power loss due to dif-
fraction), we have for the reflected intensity I' in the Laue

and Bragg cases, respectively, the following relations:

(55) dI'L =cI, e " Tos 0§ dx
2x
(56) dl'g = cI, e M o5 T ax

so the ratio of maximum reflected intensities is

To _
I' max cl, f opt e ¥ T°opt/cose ax _

2 n
(57) = S — = = 74%
Ip' max cI, Qfooe " 2X/cosedx €
(where T°opt = coﬁ o ). If a crystal of thickness 993—6— is used

in the Bréqq case as well as the Laue case, the ratio becomes
85%. Thus the Laue case is not only much more convenient to use
in the lens; it is also nearly as efficient as Bragg geametry could
be.

In a recent paper, Zachariasen (1967 a) states the results
of his new general theory of x-ray diffraction in real crystals.
This theory takes into account primary extinction (extinction within
an individual perfect block) as well as secondary extinction (in
the crystal as a whole) and ordinary absorption. In the notat-
ion I have been using, the new formulae can be writted as follows

(for the Lave case):



Ty
_ QT -, cos 8
(8)  R=gosb © v,
(59) y= —— sirh /3,
/3%
(60) x=uQ{_E+(T—E) [1+(%)21‘1/2} ,
_ 2t
(61) a = ....3_;\; ,

where T is the mean path length throuch the crystal, t is the

mean path length through a perfect crystal domain, and t, is the
mean thickness of the perfect domain measured normal to the incident
beam in the plane of incidence (the plane containing incident and
reflected wave vectors). According to Zachariasen (1967 b),

1
V1l + 2x

is a slightly better expression than equation 59 for most crystals.
(The expansion of ————l—-———, for small x, lies between the expansion
V1 + 2 1
of equation 59  and the expansion of ——— tan~1V3x (which
X
Zachariasen (1967 a) recammended in place of ecuation 59 for

(62) y =

crystals with x and uT greater than one.))
If the perfect domains can be considered as spheres of

radius r, and if r << T,, equation 60 becomes

Q3 T Ag

63) x =2 { 212 + =2 :

A L2 cos 0 '_M-z-l-!-()\q/r) }
6o 22Lg 1+ dzy 72

if r is very small. (When r is so small, primary extinciton is

negligible.) If we assume that x << 1 for our crystal, then a
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Taylor's expansion gives
(65) y 21-x
-t To/cos6

gy -z 0
(66) R = s T © - T + (*g/r) 2]

o ~(uo + g0/Y1+ (g/r)?) To/cos 6.

cos 6

e

(67)

If we are concerned with energies so high that A << r/g,

then equation 67 reduces to the result obtained earlier (egquation
48) . The validity of the assumptions made here will be demon-
strated when we compare theoretical and experimental values of

R for natural rock salt in the energy range 20-140 KeV.
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VIII. THEORETICAL AND MEASURED VALUES OF R AND Toopt

Using equation 50, I calculated the reflecting power R
of rock salt crystals of optimum thickness in the Laue case.
In calculating Q, I took values of |F| (for first and second
order retlections from NaCl) from a graph given by James (1948).
James' graph shows theoretical values (calculated from the
Hartree theory) and experimental values (which are in good agree-
ment with the theory)° For first order reflections from cleavf
age planes IFI = 21.3, while for second order reflections IFI =
12.8 (these values apply to a unit crystal containing one sodium
and one chlorine atom). X-ray diffraction theory does not predict
a value of g, but measurements of the reflecting power (in the
Lave case) at different thicknesses of the same crystal yield a
value of g. Zachariasen (1945, p. 168) suggests for rock salt
g = 260. Values of 5- (where o is the density) for sodium and
chlorine were found in the Handbook of Chemistry and Physics;
from them, we calculate the ordinary linear absorption coefficient

for sodium chloride
o= (N Lk
and the ordinary absorption length
21
(69) Ao = E:' I4
which are shown, as functions of enerqgy, in Figs. 8 and 9.

The first and second order theoretical curves of R labeled

g = 260 in Fig. 10 were calculated from equation 50. Although
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%S—T—g- "~ 0.3 near the peak of the first-order curve, equation
48 (which assumed gé%sl"— << 1) still agrees very well with the
following formula, obtained by integrating a Taylor's expansion

of equation 32 about oT, = 0.3:
_ ~He To/cosb QT, _ Q To; 2
(70) R= e [o.964 LTe - 0.741 (2Tey2 7.

The "ideally imperfect" first order curve of Fig. 10 represents
the upper limit (attained when g = 0) on RLaue for rock salt.
The above values of lF* and g were also used to calculate the
theoretical optimum thickness. Ecuation 50 gave the curves
shown in Fig., 11.

The experimental points of Fig. 10 represent the values of
R which I obtained fram my machine data (filled-in circles)
and source data (open circles) for rock salt crystals of optimm
thickness (determined experimentally). Each machine point is
an average of as many as eight values of R (calculated from the
efficiency bandwidth products measured at a given energy). The
two experimental values of optimum thickness shown in Fig. 11
were obtained by measuring relative reflecting power (using
sources) as a function of crystal thickness at 22 KeV and 60 KeV.
Approximately ten measurements with crystals of various thicknesses
(all close to the theoretical optimum thickness) were made at
each of the two energies.

Within the limits of experimental error, the measured values
of R and optimum thickness are in good agreement with the values
predicted by equations 50 and 49. Scme of the machine measurements

of R may have tended to be high because the incident beam was
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very narrow (half the intensity was confined within an area of
only 0.007 am? at the crystal). Conceivably, a region this small
could have an anamalously low value of g, thus permitting a larger
value of R. In fact, the distribution function W(4) may be
significantly non-Gaussian over much small areas, so that the
definition of g (equations 35 and 36) and the formulas for opti-
mum thickness and reflecting power (equations 49 and 50) given

above do not apply.
Consider, for example, a hypothetical small mosaic crystal

whose distribution function falls off linearly with A, and A,:
(T1) Wby, 8,) = { v(8o=1ag]) (Ae=]851), I8 )< 8y and [a,]<a,
o) v |0gl> 85 or |4, ] >4,.
Then normalization (equation 37, with § >A,) requires
(72) Y =5 .
As before, we calculate for o(9) (using ecuation 38)
(73) o(8) = £ Wy (0-0p) = o2 W, (6-8p)

where now

(74) W, (8-6p) =z\%’? (8o-]0-85]) .

In place of equation 47, we obtain

2 _ 2 QZTQZ
(75) §(°T°) e = 30, cos < 0

so that the formula for R (eg. 48) is still valid if g is set

2

Clearly, other non-Gaussian distribution functions will give

rise to the same formula (eg. 48) for R, provided oT, << 1. Thus,
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although the value of g can be determined from measurements
of R at more than one energy, these measurements tell us

nothing of the actual form of the distribution function W.
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IX. CONSTRUCTION DETAILS

The above calculations of the reflecting power R(E) can be
used to determine the effective area of the lens as a function
of energy for a given lens geametry. Some camments on the
geametry and construction of this lens are therefore in order.

Reflecting crystals can be mounted in any array such that
equations 5 and 6 are approximately satisfied everywhere in the
crystal array. (For crystails of finite dimensions, these
equations cannot be exactly and simultaneously satisfied at all
possible reflecting points; but if the individual crystals are
small enough (smaller than the detector) and well enough aligned,
and if the x-ray source is at a small enough angle to the tele-
scope's axis, then all ths reflected x-rays will hit the detector
(i.e. the geometry is 1luis efficient under these conditions)).
(The actual anqular response function will be dealt with in a
rater section.) It seemed simplest to use the continuous curve
satisfying ecuations % and 6 (i.e. a parabola) to define the
surface on which the crystals would be mounted.

The parabola's focal length £ was chosen to be 114.6 inches.
This pacs all the refiscting crystals approximately 114.6 inches
away from the detector (since 8p,, is small). Thus an incident
x-ray from an angle € = 1° off the telescope's axis will, after
reflected, miss the focal point by about f€ = 114.6" x 1° x
%.—7%-%1—'— = 2", So with a 2 inch diameter detector centered at the

focal point, the field of view is a cone with a semi-vertex angle



30

of 1°, provided that the crystals are infinitesimally small
and perfectly tangent to the paraboloid. Using crystals
about 0.8" by 1.0" in area makes the collection efficiency
drop off gradually at smaller off-axis angles. As will be
shown later, the efficiency is down to 50% at € = 0.5° for
the focal length, crystal size , and detector size of this
telescope.

Decreasing the size of the crystals significantly would
increase the time spent cleaving crystals. Furthermore, to
take advantage of the smaller crystal size, the angular toler-
ances of the frame would have to be reduced below + 1/4° —-
accuracy which is quite difficult to attain in practice. More-
over, for rock salt the reflected beam's direction may vary by
perhaps + 1/4°, because of the mosaic structure.

It was thus decided to mount the reflecting crystals on a
frame consisting of 36 concentric circular bands (in 1 inch
radial increments) inserted into 24 radial ribs or "spokes"

(see Figure 12), each of which has 36 slots. The depth of the
slots increases parabolically with increasing distance from the
telescope's axis. The bottom of each slot is defined by a jig-
bored hole. According to the foreman of the machine shop which
did this work, this technique permitted the bottcoms of the slots
to be defined (relative to a spoke's bottaﬂ édge) to an accuracy
of + .001". The bands are .050" thick cold rold round edge flat
wire, .500" wide and selected out of stock for uniformity in

width to + .001". The bands are silver soldered together (after
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being rolled to the correct radius of curvature) and are epoxied
into the slots with a highly thixotropic (non-running) epoxy.
Between each pair of spokes, a thin skin of Silkspan paper is
applied across all the bahds. The Silkspan is applied wet,
with butyrate dope to make it adhere to the tops’ of all bands.
On drying, the Silkspan shrinks to a tight skin on which the
salt crystals can be glued. Figure 13 is a photograph of the
partially completed frame with Silkspan covering one of its
sectors.

The crysﬁals were cleaved from chunks ﬁp to several cubic
inches in size, A hammer and sharp chisel were used in the first
stage of cleaving. Then crystals of intermediate thicknesses
were obtained by successively cleaving with a hammer and an
ordinary single edge razor blade. The thinnest crystals were
cleaved by gently pushing the razor blade along a cleavage plane.
| Crystals larger than a square inch in area but thinner than .030"
could be obtained in this way. Fig. 14 is a photograph of various

cleaved crystals and one of the larger "raw" chunks.
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X. THE GAIN OF THE TELESCOPE

We define the effective area of the lens at some energy E

in the following way:

(76) A (E) = rate at which reflected x-rays are detected
lens ~ Intensity incident on lens(photons sec—!

(photons sec™?)
(unit area normal to beam) I)

If the ith crystal of the lens has area A; and is inclined at an
angle J;, and if all reflected x-rays impinge on the detector, then

we can write for the effective area of the lens

N
(77) By g (B) = 3Z; 03 (%5,

E) Aj cos 65
where p; is the ratio of reflected to incident intensity for the
ith crystal and N is the number of crystals making up the lens.
The shape oi the function p(®) for rock salt at a given energy
may vary greatly among different crystals (Bragg, 1914), so the
subscript i must be retained on .. (Nevertheless, the reflecting
power, R = fp do, is nearly the same for all the crystals.)

In the case of this lens, each crystal has the same area, A..
To evaluate the summation

(78; S igl 0;(83,E) cos 64
we note the following properties of the lens. First, there is a
large number of crystals per annulus, and the angular difference
between adjacent annular arrays is only 0.3°. Secondly, there are
irregularities in the lens frame (limited to + 1/4°), so that
- the total probability of a crystal being inclined at angle 6 is

a smooth function of 6. (Figure 15 illustrates qualitatively how
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Gaussian-like probability distributions pj and pjtj centered
at @ and & j,; (the nominal inclinations of the jth and i +
lst annular arrays) can add up to a total probability distribution
Py which is relatively constant between @'i and @ j41-)

Thus there will be a number AN >> 1 of crystals with angles

of inclination throughout the range 6+ Ag.

Equivalently, we can say there will be AN crystals at the Bragg
dEp v A8

80 |=gl= =5 E.

, where A8 = 0,3° << 6,

angle for energies in the ramge Ep + %, where AE =

The average value of S in this energy range is

AR
(79) S(B) = 5% AE I p;(65,E) cos 6; dE
E- — i=1
2
_IN
(80) = 7g B-B. cos 6p

since AN of the pi(04,E) curves are centered within the given
energy interval (see Fig. 16). Moreover, the oj(3;,E) curves
for natural rock salt have widths on the order of AE, so that
S(E) does not fluctuate appreciably in the energy range E + % .
(Bven if fluctuations in S did occur over an energy interval as
small as a few KeV, the telescope's response would be smoothed
by the relatively broad energy resolution of the sodium iodide
detector.) Thus we can ecuate S(E) to its average value in the

given energy range, and we obtain:
(81) E) = A, N E.B. cos 6
Alens = B¢ AE “-F+ COS U

Assuming that the reflecting crystals completely cover the para-
boloid, AAN is the geometrical area on the paraboloid where
crystals can reflect x-rays in the energy range E + 9%_ We can

write



AN _ dA
(82) iE - &
_ dA dep
(83) =30 ' dEI
v \ 6 v 6B
(84) = 21R sin QBR§5= 21£¢% sin 6g 2.

Thus we finally obtain

(85) A

Lens i = 27R% sin 6p %B R %:E cos dg = TR? R sin 26g.

For this lens, 47 = 229.2 inches so the contribution to Al ens
resulting from nth order reflections at a given energy becomes

nkR <2

v "
{E,n) = 72,7 x 10 Ry -

(86) 2 ns
Here R is evaluated for the appropriate order of rerlection (n)

and for the actuali thickness of the crystals which are in a
position to produce ntil order reflections at energy E.

Since the second-order reflecting power, Ry, is oniy about
one-fifth of R;, the thickness of the reflecting crystals was
chosen to be equai to the first-order optimum thickness for most
of the lens. it was, however, decided to design the outermost
part of the iens for second-order reflections between 28 and 40 KeV
instead of first order reflections between 14 and 20 KeV. The
principal reason for this modification is the realization of how
strong atmospheric absc:ption is at these energies (see Fig. 4).
Additional reasons are the increased difficulty of cleaving
crystals to thicknesses less than .024" and the fact that the
reflecting power itself is dropping off fairly rapidly at energies

below 30 ReV. (At 15 KeV, R is only about 60% of its maximum
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value, according to the theoretical curve (g = 260) of Figure 10.-
Moreover, at energies below 20 Kév, primary extinction (which will
be mentioned again later) makes the actual value of R less than
the value predicted by the theory I have discussed.)

Uéing the theoretical (g = 260) curves for R and defining
the telescope's gain to be

Ajens + Bdetector

(87) G = 3
detector

we obtain the curve shown in Fig. 17. This curve takes into
account first-order and second-order reflections for all 6 between
0.96° and 8.81°,

Provided that the lens increases the signal (i.e. counting
rate due to x-rays from a celestial source) without increasing
the background noise (i.e. leakage through shielding and/or
anticoincidence detectors and isotropic x-rays entering through
the telescope's forward aperture), the minimum intensity detect-~
able (at 30 or any other confidence level) is lowered by a factor
of G when the lens is put above the conventional detector. Since
the field of view of this telescope is so small, the contribution
of focused isotropic x-rays (atmospheric or extraterrestrial) to
the background should be very small. (By erecting cylindrical
collimators above the flat wire bands (as suggested in Fig. 3)
isotropic x~rays can also be prevented from directly reaching

the central detector.)



36
XI. THE ANGULAR RESPONSE OF THE TELESCOPE

The gain curve calculated above assumes that all reflected
xX-rays strike the detector:; that is, the boundaries of the
reflected beam in the Z = 0 plane are assumed to satisfy v x“+y<¢ <
radius of detector. This condition is satisfied if the reflecting
crystals are sufficiently small and the incident x~-rays come from
a direction sufficiently close to the telescope's axis. The
dependence of focusing efficiency, £, on the off-axis angle, €,
will now be calculated.

We first consider a reflecting crystal of infinitesimal
dimensions iying on and tangent to thé paraboloid. For con-
venience, we take the reflecting point P to lie over the y-axis
(see Fig. 18.. The incident and refle’cted rays (whose propagation
directions are the unit vectors -\;1 and \;2, respectively)

must satisfy the law of reflection

- ~ ~

(88) \Arzxn=nxvl

~

where n is =« unic vector perpendicular to the reflecting

plane: n = - cos 6 j + sin 6k. This gives v, as a function

2
of v; and 6, and we find the coordinates (xy, yy) of the point
I at which the reflected ray hits the detector (the z=0 plane)

from the following relations:

(89) Vog - XL =0
VZZ 0 -2z
(90) Voy _ Y1 - Y

sz 0 - Z *
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The exact results are

v _
(91) x. = - 1x ’—?[1—tan?-e]
I (vq., sin 26 + v1-v1Z ~v,. 2 cos 26) 2
. / o Z.. ] f— s 26
(92) y1 = - 1-vx“= viy“sin 28-vyy cos 2 6 az_g [l—tanze]+2R:Ji‘226 .

Y1-v1,“~ Viy“cos 204y, sin 2 6

If we denote by € the angle between the z-axis and {}l , and if

€ is small, we can write

(93) Vlz=cos€;'l——e—;-
n
(94) v, = sin & = &
. 4"
(95) Vly = sin ey = ey.

For this telescope, € < .02 radians for all focused x-rays,

so the following are very good approximations:

- - & % — tan2
(96) %1 = - g s T s T 2 [2 - tan® o

__lsin 26 - €, cos 28) R _ .2 sin%e
O y1=- ST eam 5 bt o) 2R g

Consider now an x-ray source at infinity in the x-z plane
(so €, = € and €Y = 0). Let x~rays from it be reflected at a point
P' on the paraboloid above the y' axis, which is at an angle ¢ to

the y-axis (see Fig. 19). Transforming coordinates leads to

(98) xr(e,¢) =& [l—tanze -€ cos?2¢ + sin 20 sing + € cos 20 sin?¢
I+Ver 2 . . .
cos 26 - € sin¢ sin 26

-3 sin?6 sin ¢
sin 26

_ .2, —€ cos¢ sing—sin 26cos¢ - € cos 26sin¢cosd
(99) YI(e'q))_ %2 [l tan e] cos 286 - € sind sin 26

s 2
sin“8 cos ¢
+ URE= e
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For O<< -;-, these become

(100) x; ZRe ‘Ea'nta‘&é% (sin? ¢- cos? ¢) = -@—ﬁ- cos 2¢

(101) y; =Re Enta-n-ig- (-2 sin ¢ cos¢) = —@g sin ¢.

Thus the reflected x-rays fall close to a circle of radius
[_{E_i in the detector plane, provided all the reflecting crystals
are of infinitesimal size.

Accordingly, in applications where convergence of reflected
x~-rays to a point is desired even for € > 0 (e.g. focusing to
a photographic film or an array of small, independent scintillation
detectors in the z=0 plane), this x-ray lens could not be used
satisfactorily. A parabolic array of crystals under the detector
(the geametry of Fig. 1l(a)) would, however, give convergence.

A fociusing x-ray telescope lens must. consist of reflecting
crystals having finite dimensions (unless a continuously bent
crystal is used). Then the formulas given above for (xy,y7) apply
only to the center of a spot in the x-y plane "illuminated" by
xX-rays reflected from a crystal centered at P'. If the projection
of a reflecting crystal on the x-y plane is a rectangle of dimen-
sions a(in the azimuthal direction) by b (in the radial direction),
we can write the coordinates of the vertices of the rectangle
which is the boundary of a reflected beam in the x-y plane (see
Fig. 20):

(102) vy, = xg = & sin ($48), vy, =yy + % cos (¢+6)

(103) vy, = %1 - & sin (¢-9), Voy =yp + % cos (¢-6)
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(104) v

X X

It

. % sin (¢+8), v3y = Y1 - 2 cos (¢+86)

(105) vyx = Xp + 4 sin (¢-9), Vgy = ¥p - % cos (¢-8)

where ¢ is the angle from the y-axis to the y' axis (the y'
axis passes under P', the center of the reflecting crystal),
2:%- Va’+ b?, and § = tan"l (%)

Determining the positions of these vertices is the first
step in a series of calculations (performed by computer) which
finally yield the collection efficiency, €. Those vertices

which lie inside the detector's boundary (i.e. those which satisfy
(106) vix® + viy® < (radius of detector) ? )

are labeled {l?[i and are stored separately fram the vertices .V-(Si
which lie outside the detector's boundary. The number of vertices
inside the boundary is counted; this number is N.

‘ The camputer next finds the points of intersection (if any)
between the detector's boundary and the rectangle whose vertices
have just been calculated. These points are labeled fi and are
counted (there are M of them).

In calculating the mutual area A, which is contained by both
the rectangle and the detector boundaries, the formula for the
area Ap, bounded by an arc of radius R and a chord of length L
is useful:

=R sin~M&) - L vaRTTZ
(107) By, = R sin™H ) -3 /ARTF .

This formula, along with the usual area formulas for triangles,
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rectangles, and trapezoids, leads to the formulas for A, given
in Table I (here R is Rp, the radius of the detector's bound-
ary) . The formula to be used in a given case depends on N and

M, the seven possible combinations of which are illustrated

in Fig. 21.
Table I
N M é]]
0 0 o0
- -3
0 2 A where L = |I; - I,]
1l 2 AAC+%-S—2 where L = Ifl—-’zl
—p ->
Sl = |VI'[ - Ill
o -+
2 2 AA¢+§L'5.S_Z ]x?j:l-v"iéf where L = li —fzi
= = iy -
Sl=m1n{iVI1 Ill IVIZ"Ill}
. r-uw -y, . ->
S, =min | |VI, I,}, lvt, - 2”

2 4 ab (an approximation, but this case is rare)

L

. R —p -
3 2 ab% W, -I;] |[W; - I,|+ Ay where L = |I; - I,|

The above calculations of A, were made by the computer (using
the exact equations 98 and 99 for xp and y;) for each of the 7]
crystals comprising an annulus. The collection efficiency & for
that annulus at a given off-axis angle € is defined to be the
fraction of total reflected beam area which is intercepted by the

detector:
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I Ay
nab °
Values of £ were computed for 11 annuli (.86° < 6 < 8.81°) at

(108) E,€) =

values of € ranging from 0.00° to 0,90° in steps of 0.05°.
Curves of € (€) for the innermost and outermost annuli are shown
in Fig. 22. The calculations assume a = 0.8", b = 1.0", and

'Rp (the radius of the detector) = 1.0". To a good approximation,

the opening half angle (the value of € at which € = 0.5) is just

(109) € .+ radius of detector boundary - 2Rp _ 0.50°

1/2 focal length of lens V4 ’
since for € = 3’%'2 the center of the reflected beam will fall
close to a circle(in the detector's plane) of radius 'Qg— - Rp;
thus when € = %Q , about half the reflected beam's area will

overlap the detector's area.
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XIT. METHODS OF TESTING THE LENS

The collection efficiency €(€) curves calculated above
assume the reflecting crystals are mounted tangentially to a
true paraboloid. To decide how accurately the crystals must
be aligned with this imaginary paraboloid, we observe that
el/z ~ .5% and that an error of .25° in 0 causes as much de-
focusing as € = .50°, Thus to ensure a collection efficiency greater
than 50% when €= 0, the errors in ® must be less than .25°.
Accordingly I designed an optical device (see Fig. 23) which
tests the actual "attitude" (i.e. the roll and pitch angles)
of a salt crystal lying on the Silkspan skin which covers the
lens frame. The second mirror's support can be slid to any
position along the aluminum arm which, in turn can be rotated
through 360“. Thus, the second mirror functions as a light-
weight, moveable source of light propagating parallel to the
axis of the x-ray lens. Clearly, the measured value of 6 (the

crystal's "pitch" or inclination angle) is
(110) 6 = %- tan~! (3) ,

where a is measured to the center of the illuminated spot on
the screen. For the values of b used (b = 27 inches), a 1° change
in 6 produces approximately a 1 inch change in a. When the device

is accurately aligned, measurements made with it are readable to

-

° [
+ 1 ° repeatable to at least + -Jé'- » and accurate to + 211— absolutely

(at least for radial settings of 18 inches and less). Measure-

ments of the roll angle can be made just as accurately, but a
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rotation of the reflecting planes about ‘their normal changes
neither the direction of the reflected ray nor the reflecting
power of a crystal. 'I'husA the roll angle need not be measured.
The pitch angles of the crystals can be checked with an
X-ray machine if one builds a mounting device capable of
holding a detector at the lens' focal point while a well-
collimated beam of x-rays ié directed (parallel with the tele-
scope's axis) at the part of the lens to be tested and the
counting rate is mnitoréd. The detector should be small enough
(less than 1 inch in diameter for this lens) to detect significant
defocusing, and the incident x-ray beam should be broad enough
in area (more than .007 cm?) and energy bandwidth (a few KeV)
to insure that the number of photons reflected per second is just

(111) N'E) = E %E
(from equations 18 and 54) where R is the "theoretical" optimum
reflecting power (calculated assuming g = 260). If the actual
counting rate is less than the rate predicted by equation 111,
the reflectihg crystal may be oriented improperly or may have
the wrong thickness. Such tests with an x-ray machine give no
information about crystal orientation that cannot be determined
optically (with relative ease and precision), so this type of
tester has not been built.

It is also possible to use the x~ray lens to focus x-rays

from a point source a finite distance away. Figure 24 shows the

geametry of this focusing. X-rays of enerqy E are emitted by a
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source at point Q and reflected at point P (a radial distance y
from the telescope's axis) to point O' provided that the "glanc-
ing angle" 6' satisfies the Bragg condition for nth order reflec-

tions; that is, reflection can occur if
(112) 8' = 65 (n,E)

where n may have to be chosen larger than 1 since we must have
(113) ' > 0 ,

The angle 9 between the normal vector n at P and the telescope's
axis is given by

- _1 -1 2yR
(114) 8(y) = 3 tan ~
(from equations 6 and 7), where ‘gis the lens' focal length, f.
Using these values of 8' and 6 we can determine where to put the

source and the detector from the following formulas: .

s 5= 00= grhy
(116) s's o' =Eﬁ_—(%,j_97

~ 2
(117) SEQT:S_AZ:_‘EaT%F‘—_GT_%Q

32
(118) s'= TO' = S8' + Az = _ta—ﬂ_%?:ej--*' %.
To calculate the expected counting rate c' of a detector at
O' when a source of activity A, disintegrations per second (1 curie =
3.7 x 1019 sec™!) is located at Q we proceed as in section X, not-
ing, however, that the glancing angle for the ith crystal is now

8i' and the crystal's thickness, T, is no longer the optimum
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thickness for the energy of the focused x-rays. The incident
intensity I, at P will be

and the new effective area becomes

(1200 Ay ® =% =acs @

1
lens

where

1 2

(121) S8'(B) = pi (8i', E, Ty, n) cosé;'.
i=1
Provided that 6' is not much greater than 6, S'(E) will be nearly

as smooth as S(E), so we can writeAE

E + —
1 2 N
(122) S'(B) = & 4 zl pi(8;', E, Tj, n) cosf;' dE
n=
E~=
(123) = Z‘].lﬁ AN cos 6g E.B. (E, T, n)

where T is the average thickness of the AN crystals which are

AR

in a position to reflect photons of energy in the range E + —

Thus

(124) A", _(B) =3 cos 65 E.B. (K, T, n)

where now
A _ da do (dep
(125) E - ® o

since the glancing angle is now 6', not 6. To a good approximation

(for small 8'),
=0 - ¥
(126) 8 =90 &

and
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(127) vy =#e
so that we obtain
(128) _—Z’?
and
de
(129) - L ——?

Thus the effective area for finite S becames

' _ 4 S
(130) ') ___ (B) = sﬁﬁé

It can be shown fraom equation 48 that

R (E,T,n) sin 26p.

T 1-T/T °opt

, D) —e
opt T°opt

(131) R(E, T, n) =R (E, T,

Thus, if the same order reflection is used in the finite S and
~infinite S geametries, we can express A'lens (E) in terms of

lens(E) (eg. 85) as

T I/ °opt,

' - s
(132) A lens ® = Alens(E) S+ge T

which is always less than Alens (E).
The actual counting rate is then campared with c' (calculated
fram eq. 120):

- A '
(133) CcC = _41T(S———2—9-:—§72_)— A lens(E) .

Although as yet untried, this method of testing annular sections
of the x-ray lens should be accurate and relatively easy, experi-

mentally.
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XITI. COMPARISON OF THE FOCUSING X-RAY TELESCOPE
WITH OTHER X-RAY DETECTORS

Two possible versions of this focusing x-ray telescope are
campared with other x-rays detectors in Table II and Fig. 25,
which shows the minimum intensity detectable in 100 seconds
(with 30 confidence) assuming anticoincidence (shielding)
efficiencies calculated by Webber (1967). All the detectors

use sodium iodide crystals situated in same sort of shield.

Table Il
Na I area Anticoincidence Opening

Detector cm? Scintillator  Focusing Half Angle Reference

Peterson A 9.4 Cs I No n 10° Peterson
et al. 1965

Peterson B 40 Cs 1 (Na) No 3° Peterson,
1966

Reinert 100 Liguid No v 10° Webber,
1967

Lindquist A 20 Plastic 6'dia. lens 0.5°

Lindquist B 20 Cs I 6'dia. lens 0.5°

Although liquid and plastic scintillators are efficient
detectors of charged particles, their low atomic numbers makes
their cross sections for x-ray absorption quite low. Thus, when
used as guard detectors for an x-ray telescope, they are supple-
mented by passive shielding (e.g. lead and tin).

Both versions of this focusing telescope (which differ only in
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the type of anticoincidence which is used) have considerably
greater sensitivity at 30 KeV than the other detectors listed,
but the advantage diminishes rapidly with increasing enerqy.
The focusing telescope has by far the narrowest field of view
of the detectors listed.
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XIV. APPLICATIONS OF THIS FOCUSING X-RAY TELESCOPE

This focusing telescope's good sensitivity (especially
in the 20-40 KeV energy range, where the flux detected at
balloon altitudes is greatest) make it well suited for collect-
ing data on weak sources in short times or discovering new
sources, provided that it can be kept pointed accurately at the
region of interest. If the telescope is made to scan across
a several-square-degree area of the sky, strong sources can be
located to a precision better than one degree as long as the
instantaneous direction of the telescope's axis is known
(though not necessarily controlled) to that accuracy. Anisotrop-
ies in the "isotropic" flux of extraterrestrial x-rays might

also be detected.
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XV. PROBLEMS ASSOCIATED WITH THE FOCUSING
X-RAY TELESCOPE

Because the x-ray reflecting power of crystals is so
small, the lens diameter must be much greater than the detector
diameter if appreciable gain is to be realized. For a given
energy range, the range of Bragg angles is fixed, so the
effective area of the lens can only be increased by making
the lens larger and putting it farther away from the detector,
thereby decreasing the field of view (since the detector then
subtends a smaller angle as seen from the lens). In the case
of this telescope, the finite size of the crystals, crystal
mounting irregularities, and the appreciable width of the
curve p(8) for rock salt can contribute to defocusing nearly
as large as the nominal opening half angle: 0.5°. So increased
gain with this type of telescope seems impossible.

Moreover, an opening half angle of 0.5° or less reguires
considerable precision in the machining of the pieces for the
lens frame. Because of variations of about .010" in hole
locations on the spokes of the original lens frame, this frame
had to be scrapped. In its place, an all-aluminum 3 ft. dia-
meter lens frame with a local length of 57.3 in. is being
built.

Devices capable of accurately determining the celestial
coordinates toward which the telescope is pointed must also

be developed. I presently plan on using a two-dimensional
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sun sensor and a gravity sensor (whose outputs will be tele-~
metered, along with detector rate and pulse height data) for
pointing direction information. Control of the telescope's

elevation and azimuth will be achieved by radio camand.
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XVI. POLARTZATION MEASUREMENTS

In calculating the effective area of this lens, we replaced
sin?¢ in equation 23 by its average value (averaged over all
possible polarization directions),

2
(134)  sin? ¢ = LE 05" 20

This was permissible for this lens, since its symmetry (about
the z-axis) implies that for a given x-ray the plane of incidence
may be at any angle to the plane of polarization of the x-ray.
The gain curve calculated above thus applies no matter how polarized
the incident x-radiation may be.

With a slight modification, this focusing telescope can
(in principle, at least) be used to detect and measure polarization
of x-rays. For radiation with its electric field vector in the
plane of incidence (the plane containing incident and reflected

wave vectors),
(135) sin?¢ = cos? 26,

whereas for radiation with its electric field vector perpendicular

to the plane of incidence,

(136) sin? ¢ = 1.
Thus the reflecting powers of a crystal for the two cases of

polarization are related by

- 2
(137) R, = cos 28 R,.
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Thus if the radiation falling on the lens is linearly polarized,
the reflected intensity will be greatest from that part of the

lens where the crystals' planes of incidence are approximately
perpendicular to the plane of polarization. If a lead disk,

with its center and two diametrically opposite sectors removed

(see Fig. 26), is made to rotate underneath the lens, the counting
rate will be greatest when the diameter between the removed

sectors is perpendicular to the plane of polarization.

However, R, and R, never differ by more than % for this
lens, so the lens itself would have to be very uniform for this
method to successfully detect even very strong polarization.

And, unfortunately, the insertion of the rotating absorber
reduces the counting rate (of x-rays from the source) by a factor
of two or more (depending on how wide the sectors are), thereby

reducing the telescope's sensitivity by that factor.
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XVII. SOME POSSIBLE FUTURE DEVELOPMENTS

Other focusing x-ray telescopes might make use of nearly
perfect crystals (e.g. calcite) which have large reflection
coefficients over a very narrow range of glancing angle(or
energy) . Such telescopes could héve great gain over a narrow
energy interval, but would require great pointing control
accuracy. And to take full advantage of this gain, the tele-
scope's detector would have to have resolution about as fine
as the bandwidth of the lens, so that background events of
energy outside this bandwidth would not be confused with the
signal.

Rocket-borne or satellite-borne x-ray telescopes might
be designed for energies below 20 KeV. At energies below 30 KeV,
the calculasted reflecting power of rock salt (assuming g = 260)
is approximately proportional to E3/ 4, so R is smaller at lower
energies. But, for a given focal length, the lens diameter
will be proport.onal to (sin eB)max' which, in turn, is inversely
proportional to tihe minimum energy which will be focused. Thus
one would expect a low energy telescope to have about the same
gain as a higher energy telescope with the same opening angle.
Since the incident intensity is, for a typical source of cosmic
x-rays, much greater at these lower energies, the low energy

telescope would be more likely to detect new sources, assuming

our calculations are correct.
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However, our calculations of R did not take into account
primary extinction, which becames important for rock salt at
energies below about 20 KeV. Primary extinction occurs when
the perfect blocks (of which a mosaic crystal is composed)
are sufficiently large that appreciable extinction occurs in
each of them. (Thus the probability of reflection by a block
is no longer proportional to the block's volume.) This effect
reduces the reflecting power of natural rock salt (in the Bragg
case) to 4.0 x 10~* at 17.2 KeV and 1.02 x 107" at 8 KeV (values
measured by Compton (1917) and Renninger (1934), respectively).
The effect can be largely eliminated by grinding the crystals
(Renninger (1934) and Braqgg (1921), but this method is not
easily applied to the thin crystals used in the Laue case.

Focusing x-ray telescopes much better than the one I have
designed could be constructed if crystals with much greater
reflecting powers were available. The fundamental limitation
on reflecting power is the ratio %— , which is just the ratio of
integrated reflection probability to absorption probability for
a small perfect crystal. If we consider, for simplicity, a

crystal whose atoms are all the same, we can readily see the

Q
u
the atomic number z of its atoms.

manner in which = varies with the density p of the crystal and
For small 6, the structure factor F approaches the number
zm of electrons in the unit cell of volume V:

v



56

The electron density is % z, where A is the atomic weight of

the crystal's atams. Thus

(139) , Zr=52 v.

Since % is fairly constant, equation 25 gives us
2
(140) 0= |Z" %52
v
where the symbol ¥ means "is roughly proportional to." For

energies below 100 KeV

(141) u o« gt

>[o

(Bleuler and Goldsmith, 1960, p. 176).

Thus
0 -4 ¢
(142) E- 73

The density of a solid is a relatively slow function of its atomic
number, so low -z crystals should have much higher reflecting
powers than high -z crystals. The atomic numbers of the components
of this lens are not very low (11 and 17 for sodium and chlorine,
respectively) , so there appears to be some hope of making a much
more efficient x-ray lens by samehow fabricating ideally imperfect

low -z crystals.
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Figure 1. Three possible arrangements of crystals to form
an x-ray lens.



(b) LAUE CASE

Figure 2. The Bragg and Laue cases of x-ray reflection.
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Figure 3. Schematic drawing of the focusing x-ray
telescope (not to scale).



OFE— T T TTTTIT] T T TTTTT] T T TTTH
J = —_]
[~ 2mb E
3mb N
Ol — —
B 4 mb ]
00l Lobd bl Lt Lo
| 10 100 1000

E, Kev

Figure 4. Atmospheric transmission of vertically incident
x~rays at high altitudes (pressures in millibars).



*S3TOAOTTY 0G JO

obeaTon porTdde ue UYRTM 3SbIe] USISbuny e woIy sRei-x JO eijoads g =Imbtd

A3 ‘ADH3N3I

VLSAYO ION
— HLIM G3NIVI80 WNY1D3dS

\

(A3YIN)ANNYLI3LS TWNLOV

ALY

l
ALISNILNI




*90INOS SATIOR
-OTpeI ® woiy sAer-x Uatm Jomod buTlooTFol burinsesul UT posn AIZawos) *9 2anbTJg

aanL
¥317dI L INWOLOHd | |
IVLSAYHD ol ~
ION 'Vig HLGIM Wy3g. G713HS aval N

2y SNILO3T43Y
T

/ (dw]~ ) 304N0S

\M§T 2 il

oot
NIGT3IHS 0 (yagyosav Wv3g
aval MHL ,2 AYVWING aV3T



*Te3siao oTesow e JO Iamod
buradeTIaT Sy3 JO UOTIETNOTED SU3 UT LUTIMOOO SoThue pue SI0309A 3TU */ aInbTg

(§S02 ‘gNIS ‘0 ) uoo




100
80

60

100

P

40

20

R

'S
I

N
Pl

I

100 40 30 25 I20 15 10
!

¥ w1 | | | L1 [ ] 1
O J 2 3 4 5 6 7 8 9 10 1l L2 13

Figure 8. u/p for Na, Cl and u for NaCl as functions of x-ray
wavelength or energy.



T TiTt

!

Lo I!Ill

l

A, INCHES

Pl Illll

.0l

T T lll|

00 l ! | | | | l | |

Ll L L NIRRT

R

l

0 20 40 ©0 80 100 120 140 160 180
E, Kev

Figure 9. Absorption length for x-rays in rock salt as a
function of enerqy.

200



of optimum thickness.

A e I N R N R R T T 17T T T TTTTY
-3
0 — { — =
- Ve \ —
— g -
— 1/1—-—{\ IDEALLY .
- / {\ / IMPERFECT |
o
~ FIRST ORDER / (\ 7
_4 /9"260
10 — —
| SECOND ORDER ]
| | DATA OBTAINED WITH X-RAY MACHINE B
] DATA OBTAINED WITH RADIOACTIVE SOURCES
&3 Lol Lol NN
| 10 100 1000
ENERGY, KeV
Figure 10. Reflecting power (Laue case) of rock salt crystals



1T

SECOND
ORDER

!

FIRST ORDER -

1T
| 1111

l

[

OPTIMUM NaCl THICKNESS, INCHES
o
T TTTT
HERN

l

[
I

.00! ! | ] | | | | ] ] ] | | ]
O 10 20 30 40 50 60 70 80 90 100 10 120 130 140

ENERGY, KeV

Figure 1l. Optimum NaCl thickness as a function of energv.



*oureIy oTToqexed xoF syodg *zT oanbTg
| -G'9¢ -
a3 1w X
N
_ !
..o.mi WNNIWNY 0G0

$370H "via 062"
(G377 ) LOS 090"

.1071S 40 TivL3d

!
ﬂ a3 TIN—>

REEEEEEEEE

St

i

. 0l -




23.

in Figure

The tripod surrounding the lens is a

Parabolic frame for x-ray lens.
support for the optical testing device shown diagrammatically

Figure 13.
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Figure 19. Top view of x, x', y and y' axes. Point P' lies
on the paraboloid, whose focal point is the origin O.
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OPEN SECTORS

Figqure 26. Rotating absorber to be placed under lens
to determine polarization.



